涉及聚离子的荧光偏振试验的制作方法-凯发k8天生赢家

文档序号:6098616阅读:644来源:国知局
专利名称:涉及聚离子的荧光偏振试验的制作方法
相关申请本申请是1999年5月21美国专利申请09/316,447的部分继续申请,并要求1999年6月16日临时申请60/139,562和1999年9月28日临时申请60/156,366的优先权。本申请结合了以上所述申请的全部内容。
背景技术
几乎所有的化学、生物和生物化学研究都依赖于研究者能否通过检测反应混合物中是否存在特定化学物质来确定其研究方向。简单的如通过测定反应产物的生成速度或反应物的消耗速度来分析反应的速度和效率。同理,相互作用性反应例如结合或解离反应一般通过测定所得反应混合物中结合或游离物质的量来进行分析。
对某些的反应来说,要检测的物质或合适的替代物很容易检测并区别于其他物质。因此,为了检测此类物质,只需对其进行探测即可。为此,通常使反应产物或反应物可用光学手段测知并区别于其他物质,这是基于仅在产物或底物上存在具有活性的光学信号元素或组分。通过测定光学信号的水平,即可直接确定产物或所剩底物的量。
不幸的是,许多特别有意义的反应并不具有方便易得的替代物能够仅在发生要研究的反应时才产生信号。例如,许多反应对于生物学研究具有重大意义,其中的试剂不能通过改性而产生实质性的光学特性改变。研究者曾尝试改造底物以产生光学特性改变。例如,典型的两分子间结合反应可得到分子复合物。然而,即使结合对成员之一被标记,复合物的形成仍不一定能产生复合物与被标记分子之间光学上可测的差异。结果,大多数结合试验依赖于结合对中一个成员或分子的固定化。然后,带标记分子与固定化分子接触,然后洗去固定化支持物。在对洗下的支持物进行检测以查找带标记分子,由此反映带标记组分与无标记固定化组分的结合。为了提高试验的处理量,通常需要制备不同结合对的大型阵列。参见pirrung等的美国专利5,143,854。
或者,以核酸杂交试验为例,研究者已开发出了一些互补性标记系统,利用的是结合元素在结合或非结合状态下的靠近程度来产生荧光信号。参见mathies等有关fret染料的美国专利5,668,648,5,728,528,5,853,992和5,869,255,以及tyagi等在《自然与生物学》14303-8(1996)和《自然与生物学》1649-53(1998)中有关分子信标的描述。
如上所述,结合反应只是一般不产生光学可测信号的试验之一。同理,还有许多其他试验的试剂和/或产物即使结合了光学可测元素仍不能方便地彼此区分。例如,磷酸基团结合到可磷酸化底物上的激酶试验,一般没有在磷酸化反应完成后可产生可测信号的替代性底物。相反,这类反应一般依赖于产物的结构改变,这种结构改变被用来将反应物与产物分离。然后再检测产物。显然,因为各步骤之间的损伤,这种需要附加分离步骤的试验既费时又低效。
所以,需要一种无需固体支持相和附加分离步骤等等而实施上述试验的方法。本发明即满足了这些及其他重要需求。
本发明概述本发明提供用于进行多种不同试验的方法、系统和试剂盒等。所述试验一般包括提供第一试剂混合物,其中包含带荧光标记的第一试剂。向该第一试剂混合物中引入第二试剂生成第二试剂混合物,第二试剂与第一试剂在反应生成电荷不同于第一试剂的荧光标记产物。在第一和第二试剂混合物至少其一中加入聚离子,测定第二试剂混合物相对于第一试剂混合物的荧光偏振度,所述的荧光偏振度反映反应的速度或程度。
本发明的另一项内容是检测反应的方法。该方法包括提供第一试剂混合物,其中包含带荧光标记的第一试剂。向该第一试剂混合物中引入第二试剂生成第二试剂混合物。第二试剂与第一试剂反应生成电荷不同于第一试剂的荧光标记产物。在第一和第二试剂混合物至少其一中加入聚离子,将第二试剂混合物的荧光偏振与第一试剂混合物的相比。
本发明的另一项内容是鉴定靶核酸序列中是否存在某核苷酸亚序列的方法。该方法包括在第一反应混合物中将靶核酸序列与带正电或不带电的荧光标记核酸类似物接触。该核酸类似物与所述亚序列互补,因而能够与之特异性杂交形成第一杂交产物。将第一反应混合物与聚离子接触,将聚离子存在下第一反应混合物的荧光偏振水平与靶核酸序列不存在时核酸类似物的荧光偏振水平比较。荧光偏振水平升高说明存在第一杂交产物。
本发明还包括检测可磷酸化化合物磷酸化的方法。该方法包括提供带荧光标记的可磷酸化化合物。在第一反应混合物中,在磷酸基团存在下,将该可磷酸化化合物与激酶接触,然后将该第一混合物与聚离子接触。将聚离子存在下第一混合物的荧光偏振水平与无激酶时带荧光标记的可磷酸化混合物的荧光偏振水平比较。
本发明还包括检测可磷酸化混合物磷酸化的方法。该方法包括提供带荧光标记的可磷酸化化合物。在第一反应混合物中,在磷酸基团存在下,将该可磷酸化化合物与激酶接触。将第一混合物与第二试剂混合物接触,该第二混合物包含缔合有螯合基团的蛋白质和选自f3 ,ca2 ,ni2 和zn2 的金属离子。将第二混合物存在下第一混合物的荧光偏振水平与无激酶时可磷酸化混合物的荧光偏振水平比较。
本发明还包括一种带有液体容器的试验系统。该系统包括第一反应区,其中含有包含带荧光标记的第一试剂的第一试剂混合物,与第一试剂反应生成电荷不同于第一试剂的荧光标记产物的第二试剂,以及聚离子。该系统还包括检测区和与之传感相通的检测器。该检测器可检测检测区内试剂的荧光偏振水平。
本发明还包括一种在主体结构内有第一通道的试验系统。所述第一通道与第一试剂混合物来源,第二试剂来源和聚离子来源流通相连,所述第一试剂混合物包含带荧光标记的第一试剂,所述第二试剂与第一试剂反应生成电荷不同于第一试剂的荧光标记产物。该系统还包括用于将第一、第二试剂和聚离子引入第一通道的物质传输系统,和与该第一通道传感相通的检测器。该检测器可检测检测区内试剂的荧光偏振水平。
本发明还包括一种试剂盒。该试剂盒包括一份带荧光标记的第一试剂;一份与第一试剂反应生成荧光产物的第二试剂,该产物的电荷与第一试剂不同;一份聚离子。该试剂盒还包括以下操作说明检测第一试剂的荧光偏振水平;在第一混合物中将第一试剂、第二试剂与聚离子混合;检测第一混合物的荧光偏振;和将第一试剂的荧光偏振水平与第一混合物的荧光偏振水平比较。
本发明还包括一种用于确定反应参数的试验系统,它包括提供第一试剂混合物。该第一试剂混合物中包含带荧光标记的第一试剂。向第一试剂混合物中引入第二试剂形成第二试剂混合物,所述第二试剂与第一试剂反应生成电荷不同于第一试剂的荧光标记产物。向第一和第二试剂混合物至少其一中引入聚离子。该系统还包括以下步骤的计算机辅助程序测定第一试剂混合物的第一荧光偏振水平;测定第二试剂混合物的第二荧光偏振水平;和将第一和第二荧光偏振水平进行比较;并计算反应参数。
附图简述

图1显示本发明一概括性试验过程实施方式的简图。
图2显示按照本发明进行的例如核酸杂交试验等结合试验的简图。
图3显示按照本发明进行的例如激酶试验等酶促试验的简图。
图4显示按照本发明进行的磷酸酶试验简图。
图5显示用于实施本发明试验方法的整个系统的一般性图示。
图6显示一种多层微液体装置,可以用作本发明的反应/试验容器。
图7显示一种可以用作本发明的反应/试验容器的微液体装置,该装置带有一个外部取样移液器。
图8显示本发明所用的一例光学检测系统。
图9显示本发明试验系统进行试验的软件程序或计算机辅助过程流程图。
图10显示一例本发明所用计算机系统及其体系结构。
图11显示微液体装置与其他元件的关联,这些元件用于控制物质传输,检测来自微液体装置的试验结果,并分析所述结果。
图12a-e是聚阳离子不断增加时,不同荧光磷酸化化合物荧光偏振度图。
图13是在聚离子存在下改变底物与产物的相对浓度所得荧光行可磷酸化底物与磷酸化产物混合物的荧光偏振度图。
图14与图13相似,但所用的是不同的可磷酸化底物和磷酸化产物。
图15是用毛细管电泳分离/检测所得蛋白质激酶b(pkb)活性(纵轴)与荧光偏振度测得值(横轴)之间的关联图。
图16是在反应混合物中不同atp浓度下,pka试验的荧光偏振与反应时间关系图。
图17是根据图16数据所得反应初速度与atp浓度关系图。
图18是根据图16和17数据所得lineweaver-burke图。
图19是对照和酶促试验混合物之磷酸酶活性与时间关系图。
图20是3次不同蛋白酶试验(阴性对照和2种不同酶浓度)荧光偏振水平与时间关系图。
图21是没有聚阳离子或存在不同浓度聚阳离子条件下,用于检测非互补或互补靶dna序列的荧光pna探针其荧光偏振度柱形图。
图22是靶核酸序列与完全互补荧光pna探针混合物的荧光偏振度图(上线,菱形记号),和荧光pna探针与互补但有一个碱基错配的靶序列混合物的荧光偏振度图(下线,方形记号)。
图23a,b和c是dna/pna杂交链的熔点曲线图,其中,靶序列与探针有3种不同的构型。所示为代表完全匹配,和两种不同错配(分别为图23a,b和c)的靶序列,以及3种不同长度(9元,11元,和13元)探针,分别以各图中的三条线表示。
图24显示用本发明荧光偏振法进行的snp检测,以及该检测结果与简单荧光强度测定法的比较。
本发明的详细描述i.引言本发明主要提供试验方法及系统,它们可广泛用于多种一般试验模式不可适用的场合。本发明的方法和系统能够在反应底物存在下检测反应产物,尽管产物检测的基础是其与底物所共有的特性,例如荧光标记基团。
总的说来,本发明的方法和系统利用反应产物与反应底物间因反应导致的电荷差异将两者区分。利用上述反应组分之一(不论是底物还是产物)上的电荷使之与较大的聚离子化合物缔合。聚离子大化合物与底物或产物择优缔合的结果是当用偏振光激发时,上述组分发出的荧光偏振水平明显改变。因为要研究的反应致使电荷存在或消除,所以大化合物只择优地与底物或产物之一缔合,这种缔合及其引起的荧光偏振变化就成了要研究的反应进程的指标。
ii.试验方法本发明提供了一种检测化学、生物化学或生物反应的方法。该方法包括提供第一试剂混合物,其中含有带荧光标记的第一试剂。将第二试剂引入第一试剂混合物形成第二试剂混合物。第二试剂可与第一试剂反应或相互作用生成电荷显著不同于第一试剂的荧光标记产物。本文中,“电荷不同”或“电荷显著不同”都表示产物所带净电荷与第一试剂所带净电荷的差异足以引起聚离子化合物与底物和产物缔合上的差异。就整个试剂分子的平均电荷而言,所述电荷差异可以是一个电荷单位的分数。然而较好的是,在试验ph下,底物与产物相差至少一个电荷单位。例如,根据上述表达,带有1单位净正电荷或负电荷的产物与净电荷中性的第一试剂,它们的电荷显著不同。同理,带2单位正电的产物与带1单位正电的第一试剂电荷显著不同。较好的是,电荷显著不同的产物与第一试剂之间相差至少2单位净电荷,有时,例如在后文核酸试验中,差异可能远高于2单位电荷。
根据试验类型和要检测的反应产物的性质,将一种聚离子与第一和第二试剂混合物之一或两者接触。因为要研究的反应将产生电荷显著不同于底物的产物,该产物与聚离子的相互作用也将显著不同于底物,例如该相互作用/缔合的提高或降低。缔合与否对于产物引起所发射荧光偏振的能力具有重大影响。具体地说(并可参见后文),较小的第一试剂的旋转扩散速度较快。该旋转扩散速度影响着荧光化合物在受偏振光激发时发射偏振荧光的能力。然而,聚离子大化合物与小荧光分子的缔合将显著减慢该分子的旋转扩散速度,降低其发射偏振荧光的能力。
然后,将第二试剂混合物中的荧光偏振水平与第一试剂混合物中的比较。通过比较,可以衡量与聚离子结合的物质所发出的荧光。如后文所述,通过调节ph、离子强度等对试验进行调整,只有第一试剂或产物之一可与聚离子缔合。于是,可用荧光偏振的变化来衡量产物生成量或第一试剂消耗量,并因此成为反应进度的指标。
用荧光偏振检测来测定不同分子间结合的原理较为简单。简而言之,当用偏振光源激发一荧光分子时,该分子将发射位于一固定平面内的荧光,例如,如果分子在空间上固定的话,则发出的光也是偏振的。然而,因为分子一般在空间上旋转并振动,所以,发射荧光的平面随分子的旋转而变化(又称分子的旋转扩散)。换言之,发出的荧光通常是去偏振的。分子在溶液中旋转得越快,其去偏振程度越高。相反,分子在溶液中旋转得越慢,其去偏振程度越低。一个分子的偏振值(p)正比于该分子的“旋转相关时间”,即其转过57.3°(1弧度)所需的时间。旋转相关时间越短,分子旋转越快,偏振越小。旋转相关时间越长,分子旋转越慢,偏振越大。旋转相关时间与粘度(η)、绝对温度(t)、摩尔体积(v)和气体常数(r)有关。通常根据以下公式计算旋转相关时间旋转相关时间=3ηv/rt (1)从以上方程可见,如果温度和粘度保持不变,则旋转相关时间及与之相关的偏振值将直接与分子体积相关。所以,分子越大,其荧光偏振值越高,相反,分子越小,其荧光偏振值越低。
在荧光结合试验中,通常用一个旋转相关时间较短的带荧光标记小分子(例如配体、抗原等)去结合一个旋转相关时间较长的比它大得多的分子(例如受体蛋白、抗体等)。带标记小分子与大分子结合显著延长了标记分子的旋转相关时间(降低旋转度),即带标记复合物的旋转相关时间长于未与代表作结合的游离带标记分子。这可对偏振度产生可以测知的相应影响。具体地说,带标记复合物的荧光偏振明显高于未结合的带标记分子。
一般可用以下公式计算荧光偏振水平 其中, 表示在与激发光平行的面上测得的荧光, 表示在垂直于激发光的平面上测得的荧光。
在筛选试验中,例如筛选所研究结合功能的抑制剂、增强剂、激动剂或拮抗剂,将不同化合物存在和不存在条件下反应混合物的荧光偏振度进行比较,由此确定这些化合物对于所研究的结合作用是否有影响。具体地说,在结合抑制剂存在下,荧光偏振度降低,因为试验物中存在较多游离的带标记配体。相反,结合作用增强将使荧光偏振度升高,因为试验物中较多的是复合物,游离的带标记配体则较少。
优选的本发明方法通常用到荧光偏振检测,例如检测特定反应过程中反应混合物的荧光偏振度,然而也可以采用其他荧光检测方法。例如,已发现,除了改变反应混合物的荧光偏振度之外,该混合物中聚离子的缔合还会对混合物的总体荧光水平或强度产生影响。因此,就本发明最广义的内容而言,可以在反应过程中对多种荧光特性的改变进行测定。
如上所述,本发明的试验方法一般需使用一种荧光标记团作为第一试剂。第一试剂的性质一般取决于试验类型。通常,可用本发明进行的试验有许多,包括大量结合或其他缔合试验以及酶促活性试验。因此,所述第一试剂包括,例如,特定结合对(即抗体/抗原对,受体/配体对,互补核酸或他们的类似物,结合蛋白与其结合位点)成员之一。或者,所述第一试剂可含或另含一种可被所研究反应所改变的底物,例如通过对第一试剂化学结构的增加、减少或改变。此类底物的例子包括,带有可磷酸化基团的激酶底物,例如丝氨酸、苏氨酸和酪氨酸磷酸化位点等,磷酸酶的己磷酸化底物,氨基转移酶的含氨基或酮基底物,可转化为羧基化合物的醇类(例如通过葡萄糖-6-磷酸脱氢酶转化),以及硫酸酯酶、磷酸化酶、酯酶、水解酶(蛋白酶)、氧化酶等的底物。
根据试验性质,第一试剂可以带正电、负电或呈电中性。第一试剂的荧光标记可选自多种荧光标记化合物。通常,此类荧光标记化合物可以购得,例如可购自molecular probes(eugene,or)。通常,荧光素和罗丹明特别适合本发明所述的试验方法。这些荧光标记与第一试剂结合,例如通过熟悉的偶合化学机制共价结合。有关标记基团及其化学机制,可参见例如已公开的国际专利申请wo98/00231。
此外,如前所述,第二试剂与第一试剂反应、相互作用或以其他方式缔合或结合,从而形成电荷显著不同于第一试剂的荧光产物。和第一试剂一样,该第二试剂一般也可以是特定结合对的一员(例如与第一试剂互补的成员),条件是结合对的这两个成员(即第一和第二试剂)所成的杂交产物带有显著不同于第一试剂的电荷。在许多情况中,这表示如果第一试剂中性,则第二试剂带电;或者,如果第一试剂带中强度电荷,则第二试剂带高强度电荷。或者,第一试剂与第二试剂的缔合引起构象改变从而生成带电产物或结合并遮蔽第一试剂的带电残基。
由于第一试剂与第二试剂的反应产物带有不同于单独第一试剂的电荷,它会以不同的方式与其他带电分子相互作用。例如,带有大量电荷的聚离子化合物会以电荷依赖性方式与带电物质相互作用。在本发明中,聚离子大化合物被用来“标贴(tag)”产物或第一试剂,从而影响其发射偏振荧光的能力。
本发明优选的聚离子包括聚氨基酸,例如蛋白质或多肽,即聚赖氨酸、聚组氨酸和聚精氨酸。可用的其他聚离子包括有机聚离子,即聚丙烯酸、聚羧酸、聚胺(例如聚乙胺)、聚磺酸(例如聚苯乙烯磺酸)、聚磷酸(例如聚乙烯磷酸)或以上所述之部分或全部的共聚物,例如聚氨基酸的混合物等。与试验所用的第一试剂和/或第二试剂,和/或产物相比,这些聚离子较大。因此,可以根据第一和/或第二试剂和/或产物的大小来改变聚离子的大小。通常,聚离子大小在5kd至1000kd之间,以10至200kd之间为佳,10至100kd之间更好。以聚氨基酸为例,通常含约50至10,000个氨基酸残基,约100至1000个更好。
本发明所用的聚离子通常能以电荷依赖性方式与反应混合物中的其他组分发生非特异性相互作用。因为是非特异性相互作用,本发明的聚离子不需要产物(或底物)具有特异性识别位点。因此,这种非特异性相互作用为本发明提供了广泛的用途。而且,因为聚离子以电荷依赖性方式与产物(或底物)相互作用,所以,如果是可滴定的聚离子,可以采用允许相互作用所需电荷存在的缓冲条件。通常,聚离子物质具有一个等电点pi,使得它在试验ph条件下带上明显的电荷。通常,本发明试验所用的缓冲液都在生理范围内,例如ph6至8,在此范围内,聚离子化合物带有足够的电荷与其他带电试剂相互作用。然而,可以看出,调节它们所处的缓冲液的ph,可影响聚离子或产物之一或两者的电荷量,从而调节两者之间相互作用的程度。也可利用常规的反应调节来优化特定试验,从而获得聚离子化合物与产物(或底物)间最佳的反应速度和相互作用。
然后,可利用聚离子与荧光产物之间相互作用与聚离子与荧光第一试剂相互作用的差异来比较产物生成量。具体地说,较小的荧光化合物,例如第一试剂,在受偏振激发光激发时通常会发射去偏振度较大的荧光。这主要是因为这些小分子化合物的旋转扩散较快。相反,大分子旋转较慢,因此,在受偏振激发光激发时通常会发射偏振度较大的荧光。通过用“聚离子”形式的大“标记”标贴产物,可以显著改变产物发射偏振荧光的能力。然后检测这一特性并量化,即可用于衡量第一试剂与第二试剂相互作用的程度。通常,所测得的荧光偏振度即p值提供结合标记与非结合标记之比的量度,但是也可以测定反应前后荧光偏振度之差作为试验结果,该差值反映反应速度和/或完成程度。
图1为本发明试验模式简图。该图只是举例并不限定本发明的范围。简而言之,如图1所示,有一荧光标记的第一试剂102,其旋转扩散速度较快。第一试剂102与第二试剂(例如酶i)相互作用,第二试剂介导添加或其本身形成带电基团104与第一试剂102缔合形成带电产物106。所得带电产物的旋转扩散速度一般不同于第一试剂。
然后,该带电的荧光产物106与较大的聚离子108接触,发生缔合,所得聚离子/带电荧光产物110的旋转扩散速度与原第一试剂相比显著降低。如前所述,这种旋转扩散速度的差异是可以定量测定的,例如用荧光偏振检测法。
虽然以聚离子与反应产物缔合为例进行了概述,本发明方法也可以与此相反的方向进行。具体地说,具备所有必要特征的情况下,也可以让第一试剂与聚离子缔合。然后,所研究的反应在生成产物的过程中改变第一试剂的电荷。于是,与第一试剂相比,产物与聚离子的相互作用减弱或消失。然后,这种弱化的相互作用造成产物发射偏振荧光的能力相对第一试剂发生改变。有时,这可能要求试验采用非均相模式,例如,因为聚离子可能干扰所研究的反应,须在所研究的反应完成后加入聚离子。后文将更详细地描述以均相或非均相模式进行的本发明试验。
产物荧光偏振水平指示着与聚离子结合的荧光标记量,例如以结合标记与游离标记之比的形式。通常,记录平行荧光与垂直荧光之差与它们总和之比作为荧光偏振度数据。因此,两种荧光差异越小(例如,发射光去偏振越多),则偏振值越小。相反,发射光偏振越大,则该数值越大。就以上而言,通过试验结果比较计算出偏振值p。如下计算结合(例如与聚离子缔合)荧光分数fb=(p-pf)/(pb-pf)(3)其中,pb是结合物的p值,pf是游离物的p值。这样,如果已测定或已知完全结合的标记与完全游离的标记的p值,就可以用偏振值作为产物与底物之比的绝对定量指标。或者,如前所述,也可以测定反应前后的荧光偏振度,用两者之差指示产物产量。如前所述,该试验方法也可以逆向进行,例如,将聚离子与第一试剂结合而不是与荧光产物结合。此时,测定的是第一试剂与产物之间的的荧光偏振度差异。
p值可作为所研究反应的指标,例如指示产物产量。如后文所述,如果反应可以量化,就可以将其应用于多种不同用途,包括例如诊断,但尤其适合用于筛选所研究反应的潜在抑制剂或增强剂。这特别适合用于用一种或多种本发明所述反应,例如结合、酶促修饰等,针对具有药学意义的相关目标筛选化合物库。
虽然以上就荧光偏振检测进行了概述,但可以看出,可用多种检测方法来检测与分子大小相关的分子旋转速度或分子的平动或横向扩散速度。检测分子旋转的方法有例如核磁共振光谱,电子自旋共振光谱,和三态吸收各向异性。检测分子平动速度的例子包括例如荧光相关光谱,光漂白后的荧光恢复和核磁共振自旋交换光谱。
如前所述,本发明方法和系统可用于多种不同类型生物或生物化学反应试验,包括酶促反应、结合反应和杂交反应。在结合反应中,带荧光标记的第一试剂与第二试剂结合形成带荧光标记的产物。第二试剂通常带有一定量的电荷,使其可与第一试剂结合生成的产物带有显著不同于单独第一试剂的电荷。
此类结合试验的一个简单例子是核酸杂交试验。具体地说,在检测样品或靶核酸中是否存在某特定核酸序列或其亚序列时,通常用短核酸探针对靶核酸进行检查,该探针的序列与所研究的序列或其亚序列互补因而可与之杂交。如果探针与靶序列杂交,说明存在着要检测的亚序列。目前的高处理量方法一般要求将探针或靶序列至少其一固定化在固体支持相上或固定化在寡核苷酸阵列的特定位置上(参见,例如,美国专利5,143,854和5,744,305)。虽然已有一些溶液杂交检测方法,但这些通常需要为待检测序列特别合成的试剂,例如fret染料对,分子信标等。
在本发明中,第一试剂通常是不带电或带正电的核酸类似物,带有荧光标记。合适的核酸类似物一般是已知的,例如肽核酸(pna),磷酸甲酯聚合物和阳离子核酸类似物。例如,pna通常有一个不带电的肽骨架,核碱基分布其上,这与核酸分子的磷酸糖酯骨架带大量电荷不同。优选pna是因为其商品来源广泛,而且具有适合与互补核酸链杂交的特性,例如熔点较高等。因为这些核酸类似物中性或(有时)带正电,它们不会与试验中的聚阳离子组分(本发明核酸试验中的正电聚离子)缔合而带电。就本发明目的而言,核酸类似物的重要特征之一是不会另外与聚离子组分相互作用。通常,这意味着核酸类似物基本上不带电,例如,所带电荷不足以与聚离子相互作用。当然,许多时候,类似物会带有一定量的电荷,例如与荧光标记缔合,或者带有与聚离子相同的净电荷(正电或负电)从而避免相互作用。例如,在核酸试验中,所述类似物一般带正电或基本上不带电。
因为核酸是高电荷物质,所以用基本不带电或正电核酸类似物作为第一试剂。这样,可以根据杂交链上来自靶序列的电荷分辨游离探针和与靶序列杂交的探针。虽然聚离子可与所有靶序列缔合,包括与不与探针杂交的那些缔合,但后者并不反映出来,因为后者不带荧光标记。这样的核酸杂交试验可参见图2。
如图所示,用荧光探针204(*表示荧光标记)检查靶核酸202,所述探针通常含正电或基本上不带电的核酸类似物,例如pna探针。选择与特定核苷酸序列(例如要检测的序列)互补的探针,使之可与靶核酸202内可能存在的序列选择性杂交。单独的探针因其较小而具有较高的旋转扩散速度,如箭头206所示,因此可发射去偏振度较高的荧光。
图2分图i显示的反应是靶序列202内含有要检测的序列时的情况,此时,探针204与靶序列202杂交形成第一杂交链208。因为杂交链大于探针,该杂交反应将降低荧光标记化合物(此时即杂交链)的扩散旋转速度,如箭头210所示。然而,由于核酸的柔性特征以及杂交链的体积比之靶序列只是略微增大,这一扩散旋转速度的降低可能不显著,因而不易测知。然而,根据本发明方法,通过向杂交链添加聚离子化合物212,有效放大了该信号(p)。具体地说,核酸(即靶序列)因其磷酸酯/糖骨架带负电所以成为高电荷物质。因此,核酸即使以双链形式存在,该电荷仍然存在。
在杂交链208上增加聚离子化合物(例如聚阳离子212,即聚赖氨酸)时,它与杂交链208缔合,形成缔合物214,由此显著降低缔合物214整体的旋转扩散速度,如箭头222所示。这一差异比较容易测知。
与此不同,分图ii所示的是靶序列202不含要检测的序列(与荧光探针204互补)的情况。此时,探针与靶序列不能杂交,荧光组分(即非杂交探针)的旋转扩散速度保持不变,见箭头216。而且,在反应中加入聚阳离子时,它同样会与高电荷序列缔合成为缔合物218。然而,聚阳离子不会与荧光探针204缔合,因为探针不带电或带有与之相同的电荷。因此,如箭头220所示,荧光化合物(仍未杂交的探针204)保持不变。结果,在发生杂交即靶核酸中存在要检测的序列时,反应混合物受偏振激发光激发而发射的荧光与非杂交探针相比发生明显偏振。相反,如果没有杂交即没有要检测的序列,荧光偏振水平没有变化。因此,荧光偏振的改变反映着有无要检测的序列。
本发明的方法和系统还可用于许多其他结合试验,这些试验所生成复合物的电荷都显著不同于结合对中带荧光标记的成员。例如,在中性荧光配体与带电无标记受体结合的受体结合试验中,本发明的方法可用来放大复合物发出的荧光偏振信号,这是通过聚离子大化合物与复合物的结合而实现的。具体地说,虽然复合物本身会发生荧光偏振,但缔合了聚离子化合物的偏振显著增大。可以看出,多种结合试验都可采用本发明方法进行。甚至,上述方法可方便地适用于更多的试验,例如结合物的电荷显著不同于荧光标记游离结合物成员的那些试验。
本发明的方法和系统还特别适合酶促活性试验,只要酶促产物所带的电荷显著不同于酶所作用的底物。适合本发明方法和系统的一类酶促试验是从底物上增加或去除磷酸基团,例如激酶和磷酸酶试验。关注此类活性主要是因为它们参与介导着多种体内生物学应答反应。尤其是激酶和磷酸酶反应,它们是生存和繁殖等复杂细胞行为的前序或中间信号过程。因此,在应对上述细胞行为发生紊乱的癌症等疾病方面,它们的活性具有特殊的意义。
如前所述,本发明特别适合分析激酶活性。激酶的作用一般是为蛋白质、肽、核苷酸、糖等可磷酸化底物添加磷酸基团。因为磷酸基团是高电荷基团,它们加到特定底物上通常会显著改变产物的电荷使之不同于底物。与前述试验一样,产物相对于底物的这种电荷改变可以通过添加聚离子化合物来对其加以利用,从而使产物的荧光偏振显著不同于底物。
简而言之,如前所述,给可磷酸化底物加上荧光标记。可磷酸化底物可以是中性或带电。优选在试验条件下呈中性的底物。许多可磷酸化底物可以购得。例如,罗丹明标记的蛋白质激酶a(pka)底物通常可购自promega inc.,而其他荧光性可磷酸化底物则可购自research genetics,inc.。
因为荧光性可磷酸化底物通常较小,例如小于约2kd,其旋转扩散速度较快,因此受偏振光激发而发射去偏振荧光。当在磷酸供体例如atp存在下接触激酶时,底物被磷酸化,每结合一个磷酸根就增加2单位负电荷。这2单位净负电荷提供了产物与聚离子化合物(例如聚阳离子,如聚赖氨酸或聚组氨酸)相互作用的基础。一旦聚离子与已磷酸化底物缔合,它将显著降低旋转扩散速度,由此降低荧光去偏振度,例如增加荧光偏振值。然后,可检测这一偏振变化并用于激酶反应的定量。
图3显示了以上反应。如图所示,在磷酸根304(例如atp形式)存在下,荧光标记的可磷酸化底物302与激酶306接触。反应生成磷酸化产物308。荧光底物302和磷酸化荧光产物308因为较小都具有较高的旋转扩散速度。然后,荧光磷酸化产物与聚阳离子接触。优选的聚阳离子包括聚赖氨酸、聚组氨酸等聚氨基酸,优选聚组氨酸。聚阳离子于是与负电性磷酸化荧光产物缔合,从而显著改变其大小和旋转扩散速度,后者的改变可用前文所述方法测知。可以看出,聚离子组分也可以含有缔合了多价阳离子(选自例如fe3 ,ca2 ,ni2 和zn2 )的大分子(例如蛋白质之类)。此类分子的例子包括螯合有上述离子等的金属螯合蛋白。具体地说,这些金属例子对o、n或s基团具有较高的亲和力。因此,它们可赋予大分子(例如聚离子)明显的结合亲合性,从而结合上例如核酸或磷酸化底物等中的磷酸基团,以及带有o、n或s基团的其他基团,引起的相互作用可用于显著减缓荧光物质的旋转扩散速度。
本发明还适用于与上所述反应相逆的试验。具体地说,即从已磷酸化底物上去除磷酸基团的磷酸酶反应。该反应基本遵循与图3所示逆向的路径,参见图4。简而言之,此时作为底物的荧光性已磷酸化化合物308与聚阳离子化合物310接触,缔合生成复合物312,其中,聚阳离子与磷酸基团提供的电荷缔合。如就图3所言,该复合物的旋转扩散速度较慢。当磷酸酶414作用于该复合物时,荧光性化合物302(此时是产物)上带电的磷酸基团和与之缔合的聚阳离子404被切除。在没有聚阳离子大化合物时,荧光产物的旋转扩散速度显著提高,例如,发射去偏振光。这种荧光偏振度的改变是可以测知的。如前所述,在某些情况下,可以非均相方式进行试验,例如,为了避免聚离子对反应的不利影响,在所研究反应完成后加入聚离子化合物。
虽然能够进行多种试验本身已具有实用意义,但最大的价值在于应用这些试验的用途。特别有意义的是检测药物候选化合物的各种活性。具体地说,在药物开发过程中,通常需针对某些药学靶分子对大型化合物库进行筛选。所述靶分子包括受体、酶、转运载体等。已经有了多种筛选试验和系统。参见已公开的国际专利申请wo98/00231。
简而言之,在待筛选化合物存在和不存在的情况下进行相关生物学或生物化学反应,然后测定化合物对其的影响。具体地说,如果待测化合物的存在减缓或抑制反应,则可认定该化合物为该反应的抑制剂。相反,如果待测化合物的存在提高反应的速度或程度,则可认定该化合物是该反应的增强剂。然后,对大量不同化合物进行上述筛选试验,连续进行或平行进行,从而更快地找出所研究反应的潜在效应物。iii.试验系统本发明还提供用于实施上述方法的试验系统。通常,所述试验系统包括一个液体容器,试验试剂就加入其中。液体容器通常包括第一反应区,区内是第一试剂混合物,该混合物包含带荧光标记的第一试剂,第二试剂,它与第一试剂反应生成电荷显著不同于第一试剂的荧光标记产物,还有聚离子化合物。
图5显示用于实施本发明的完整试验系统。简而言之,完整系统500包括反应容器502。所述容器旁是检测器或检测系统504,它们与容器传感相通。“传感相通”表示检测器与容器的相对位置使之能够接受来自容器的信号。如果是光检测器,例如荧光或荧光偏振检测器,传感相通表示检测器足够靠近容器,使得足够的荧光等光学信号可传递给检测器而可被测知。通常,这种检测器采用透镜、光学系统和其他检测元件为ccd,后者聚焦在反应容器的适当部位上,足以采集并记录光信号。
检测器504通常连接合适的数据存储器和/或分析单元,例如连接计算机或其他处理器,该单元能够储存、分析并以使用者可理解的方式(例如在显示器508上)显示来自容器的数据。在某些实施方式中,例如使用微液体容器的方式,可将计算机506与合适的控制单元510连接,由该单元控制液体在微液体装置容器的通道内的流动,并/或控制容器502与检测器504的相对位置,例如通过x-y-z平移台进行控制。
所述容器通常还有一个检测区以及与检测区传感相通的检测器。用于本发明的检测器通常可检测检测区内试剂的荧光偏振水平。
本发明中,所述容器可取多种形式。例如,容器可以是简单的反应罐、孔、管、池等。或者,所述容器可以是单根毛细管或通道,也可以是由一根或多根液体通道、腔室等集合而成的液体系统。
如果是简单反应罐、孔、管、池等,反应区和检测区通常指容器中包含同一液体的部分。例如,在反应池包含液体的部分,试剂混合,反应,然后检测。通常,为了加快试验(例如筛选试验)进程,可使用复合容器。此类容器的例子包括多孔板,即96孔、384孔或1536孔板。
就毛细管或通道型容器而言,反应区和检测区可以是容器中包含同一液体的部分。然而,多数时候,反应区和检测区是容器中分开包含溶液的不同区。具体地说,试剂可在容器的一个部分混合并反应,然后移动到另外的检测区,在此检测反应产物等。
特别优选的是,容器是微液体装置。在此,“微液体装置”指这样的装置或主体结构它包括和/或包含至少一个液体部分,例如通道、室、孔等,至少其截面之一的尺寸在0.1至500μm之间,一般在0.1至200μm之间,有时是0.1至100μm之间,,通常是0.1至20μm之间。所述的截面尺寸包括宽度、深度、高度、直径等。通常,具有上述尺寸的结构被称为“微米级”。本发明所述的微液体装置在单个主体结构内通常有至少一个通道和/或室,以多个为佳。这样的通道和/或室可以是分散隔开的,也可以是彼此连通的。所述连通可以由通道、通道交叉件、阀门等形成。通道的交叉可以取多种方式,包括十字交叉,“t”形交叉,或两通道流通的其他结构。
因为本发明微液体装置可控制性,它们特别适用于进行非均相试验。即,在微米级通道网的第一区域进行反应。然后,反应产物移动到另一区,或在原位置引入其他组分与反应产物混合。例如,可在要研究的反应完成后加入前述聚离子组分,从而确保它不干扰反应。微液体系统能够准确引导各种试剂在不同的通道内流动,使它们的测量值准确,添加及时。举一个简单的例子,可在微液体装置的第一通道区域进行对已磷酸化底物的磷酸酶反应,得到硫酸基团(例如atp)和非磷酸化产物,以及未反应的底物。然后,将反应混合物引到另一含有聚离子的通道或在原通道区段从而将聚离子引入反应混合物,使该混合物与聚离子组分(例如聚组氨酸)混合。然后,让所得混合物通过检测区,在此检测荧光偏振度。
所述的微液体装置在结构通常包括整合在一起的两部分或更多部分,它们彼此配合或连接,形成例如内含所述通道和/或室的本发明微液体装置。通常将所述微液体装置制成多层复合体。即,这样的优选装置有一个顶部,一个底部,和一个内部,主要由所述内部构成装置的通道和室。
图6展示了一个微液体装置的双层结构610。较好的是,装置的底部612基本为平面结构的固体基底,并具有至少一个基本平整的上表面614。多种基底材料可用作底部。通常,因为所述装置是微制造的,基底材料可根据其与已知微制造技术(例如光刻法、湿化学蚀刻、激光烧蚀、空气磨蚀、注模、压花等技术)的适应性进行选择。还可以根据是否适合微液体装置的所有预计使用情况来选择,所述情况包括极端ph、温度、盐浓度和电场的采用。因此,在某些优选实施方式中,基底材料可以是微制造技术的半导体行业常用的材料,包括例如二氧化硅型基底,例如玻璃、石英、硅或聚硅,以及砷化镓等其他基底材料。如果是半导体材料,尤其是在要对装置或其内含物施加电场时,基底材料上最好具有绝缘涂层或绝缘层,例如二氧化硅层。
另一优选实施方式中,基底材料包括聚合物材料,例如塑料如聚甲基丙烯酸甲酯(pmma)、聚碳酸酯、聚四氟乙烯(teflontm)、聚氯乙烯(pvc)、聚二甲基硅氧烷(pdms)、聚砜、聚苯乙烯、聚甲基戊烯、聚丙烯、聚乙烯、聚氟乙烯、abs(丙烯腈-丁二烯-苯乙烯共聚物)等。这些聚合物基底可用已知微制造技术方便地制得,或用注模、压花或冲压等已知铸造技术由已制成的底板翻造。优选这些聚合物基底材料是因为它们易于制作,成本低廉,容易处理,而且一般对大多数极端反应条件呈惰性。同样,这些聚合物材料可以具有处理过的表面,例如衍生化或有涂层的表面,用于增强其在微液体系统的适用性,例如强化液体引导作用,参见美国专利5,885,470。
通常可用上述微制造技术将所述微液体装置的通道和/或室做在底部基底612的上表面内(虽然它们也可以做在底部基底的上表面或顶部基底的下表面或这两个表面内),呈微米级凹槽616。顶部基底618也具有一个第一平表面620和与之相背的第二表面622。在根据本文所述微制造技术制作的微液体装置中,顶部还分布有多个孔、洞或眼624,它们从第一平表面620贯穿至与之相背的第二表面622。
然后,将顶部基底618的第一平表面620与底部基底612的平表面614配合(例如彼此接触),并与之结合,覆盖并封闭底部基底表面内的槽和/或凹陷616,在这两个部件的界面上形成所述装置的通道和/或室(即内部)。装置顶部内孔624的方向使得它们与底部基底内凹槽或凹陷在装置内部形成的至少一个通道和/或室相通。在完整的装置中,这些的孔的作用是方便液体或材料引入作为装置内部的通道或室,以及作为电极与装置内液体接触的端口,从而可沿通道长度施加电场,用于控制和引导装置内液体的传输。
在许多实施方式中,所述微液体装置包括一个位于一个或多个通道和/或室上方的光学检测窗。光学检测窗一般是透明的,以便传递所在通道/室所发出的光学信号。例如,当覆盖层是玻璃或石英,或pmma、聚碳酸酯等透明聚合物材料时,光学检测窗可以只是透明覆盖层的一个区域。或者,在用非透明基底制造装置时,可将上述材料的透明检测窗附加到装置内。
如后文所述,以上装置具有多种用途,包括例如药物开发中的大处理量筛选试验,免疫试验,诊断,基因分析等。因此,本发明所述装置通常具有多个样品引入口或储器,用于平行或先后引入并分析多个样品。或者,可将以上装置与移液器等样品引入口配合,后者用于将多份样品先后引入装置接受分析。这种样品引入系统的例子可参见美国专利5,779,868和已公开的国际专利申请wo98/00705和wo98/00231。包括一个外部样品移液器的微液体装置图可见图7。
有些基底,例如玻璃、石英或二氧化硅基底,有时可能需要在微液体装置的通道内加以涂层。这主要是为了降低聚离子组分与基底带电表面之间的相互作用。各种已知涂料都可用于此目的,包括常用于电泳的那些聚合物涂料,例如线性聚丙烯酰胺,如聚二甲基聚丙烯酰胺(pdma)等(参见美国专利5,948,227,5,567,292和5,246,101)。所述聚合物可以是二氧化硅吸附性的,或能共价结合于基底表面的,这可以通过例如在聚合物链上包括一个环氧基团(参见例如chiari等,hpce会议,2000年3月),用于遮蔽基底上的电荷,这些电荷会与反应混合物内的聚离子物质相互作用。
简而言之,微液体装置700(例如与参考图6类似的)有一个主体结构702,其内部有内部通道704组成的网络,它们与主体结构702内的一系列储器706接通。这些储器用于将各种试剂引入装置的通道704。将毛细管元件708与主体结构702配接,使位于毛细管内并贯穿其全长的通道710与主体结构内的通道网络704流通相连。然后,用该毛细管元件708将多种不同样品或试验物质先后吸入装置进行分析。
如前所述,本发明方法和系统通常依赖于所研究的反应所致的反应混合物荧光偏振度改变。因此,常用合适的检测系统来分辨偏振和去偏振荧光。一般说来,这样的检测系统通常可分别检测与偏振激发光同平面内发射的荧光和与激发光非同平面内发射的荧光。
检测系统的一个例子如图8所示。如图所示,荧光偏振检测器一般包括光源804,它产生试验系统内荧光化合物激发波长的光。通常,宜采用激光器、激光二极管等合适的光源,因为它们产生的光高度偏振。该激发光透过可选的偏振滤光器806,滤光器只允许一个平面的光即偏振光通过。然后,偏振激发光通过光学系统例如分色镜810和显微镜目镜812(还可以是析光镜808),高光学系统将偏振光聚焦在样品容器(以微液体装置802内的通道表示)上,其中为待分析的样品。
然后,通过目镜812汇集样品发出的荧光,通过分色镜810返回,分色镜810可通过发射的荧光并反射被反射的激发光,从而将两者拆分。然后,发出的荧光通过析光镜814,在此,一部分荧光通过滤光器816,滤除激发光平面的平行面内的荧光,并将垂直的荧光引向第一光检测器818。另一部分荧光通过滤光器820,滤除与激发光平面垂直的荧光,将平行荧光引向第二光检测器822。另一种方式中,析光镜814被换以偏振析光镜(例如glan prizm),因此不再需要滤光器816和820。然后,检测器818和822连接相应的记录仪和处理器(图8中未显示),如后文所述,在此记录和/或分析光信号。常优选光电倍增管(pmt)作为光检测器来测定光强,也可选用光电二极管等其他光检测器。
检测器通常连接计算机或其他处理器,它们接收来自光检测器的数据,并包括合适的程序,用于将来自光检测器的数据进行比较,侧耳测得样品的偏振量。具体地说,计算机通常包括软件程序,用于接收来自不同检测器(例如平行荧光检测器和垂直荧光检测器)的荧光强度作为输入值。然后,将各检测器测得的荧光强度相互比较,得出荧光偏振值。以下方程是此类比较的一个例子 除校正因子(c)之外,其余与前文公式相同,c可校正检测仪器的偏振偏离。由计算机得出所研究反应的荧光偏振值。根据该偏振值和游离荧光及结合荧光的偏振值,计算机可计算出结合荧光与游离荧光之比。或者,可比较反应前后的偏振值,确定偏振差值(δp)。然后,可将算得的偏振差值用作绝对值来鉴定特定反应的潜在效应物,或与存在已知反应抑制剂或增强剂条件下所得的偏振差值比较,从而量化该特定化合物抑制或增强所研究反应的程度。
图9是计算机执行上述软件程序的流程图。如图所示,程序化过程由步骤902开始,在此,计算机接收反应区(例如图5内的容器502)内未反应试剂的荧光强度数据,这些数据来自两个检测器,例如图8中的检测器818和820。步骤904计算荧光偏振值(p),例如根据本文所述的公式计算。在步骤906,计算机接收两检测器测得的反应后试剂的荧光强度数据。步骤908计算反应后试剂的p值。在步骤910,比较反应试剂和未反应试剂的p值,例如,两者相减得出反应的δp。此时,可显示δp值作为反应速度或完成程度的量度。然而,也可以象步骤912那样,将该δp与标准δp比较,后者来自速度、抑制或增强程度都已知的反应。通过这一比较,计算机可以如步骤914所述,通过内插法或外推法得出反应进程、其抑制或增强程度的定量量度,然后可将该定量量度向研究者显示。如前所述,计算机还可以内设完全游离或完全结合荧光的既定偏振值。此时不必测定荧光差值,这可省略程序的数个步骤。此时,计算机由已反应混合物检测器接收荧光数据后,只需计算反应混合物的p值,和测定结合荧光与游离荧光之比(例如根据前文方程(3)计算)。然后用该比例对反应进行定量。
如果是大处理量的筛选试验系统,计算机软件可给出特定筛选结果与特定样品或取样部位之间的关联。这可使研究者能够鉴定出用于任一试验的特定试剂。
图10是典型的本发明所用计算机及系统结构。具体地说,图10a是计算机系统举例,可用于执行实施本发明方法的软件,或与本发明的装置和/或系统相连。计算机系统1000一般包括显示器1002,显示屏1004,机箱1006,键盘1008和鼠标1010。鼠标1010可以有一个或一个以上按键,用于与图形用户界面(gui)互动。机箱1006内有cd-rom驱动器1012,系统内存和硬驱(见图10b),它们用于储存和取用软件程序,所述软件程序含有完成本发明方法和/或控制本发明装置和系统运行的计算机编码,与本发明联用的数据等。虽然图中例举cd-rom1014作为计算机可读存储介质,但也可以使用其他计算机可读存储介质,例如软盘、磁带、快速存储器、系统存储器和硬驱。此外,也可以载波数据信号(例如,网络、互联网、局域网等的数据)作为计算机可读存储介质。
图10b是计算机系统1000的方框图。如图10a所示,计算机系统1000包括监视器或显示器1002,键盘1008和鼠标1010。计算机系统1000还包括例如中央处理器1016,系统内存1018,固定存储器1020(例如硬驱),移动存储器1022(例如cd-rom驱动器),显卡1024,声卡1026,话筒1028和网卡1030等亚系统。可用于本发明的其他计算机系统可包括少于或多于以上所述的亚系统。例如,另一计算机系统可以包括一个以上处理器1014。
计算机系统1000的系统总线结构用箭头1032表示。然而,这些箭头只是例举表示连接各亚系统的各种互联方案。例如,可用局部总线将中央处理器与系统内存和显卡。图10a中的计算机系统1000是适合本发明的计算机系统的举例。也可以使用亚系统结构与此不同的其他计算机系统结构,这包括内置系统,例如控制器检测仪上的板载处理器,和“互联网型”结构,即系统通过互联网接口与主处理机连接。
计算机系统一般包括合适的软件用于接收用户指令,所述指令或者是用户输入例如gui中的参数设定区,或者是程序指令,例如针对多种不同操作所编的程序。然后,所述软件将这些指令转化为合适的语言,用于指挥物质传输系统运行,和/或对来自检测系统的数据进行控制、处理、存储等。具体地说,计算机接收来自检测器的数据,进行解读,然后以一种或多种用户可理解或方便的格式提供给用户,所述格式如原始数据图,算得的剂量应答曲线,酶学动力常数等,或者,计算机根据程序用这些数据启动后续控制器指令,用于例如控制流量,温度、试剂环境等。
如上所述,本发明还可以在微液体装置或系统中进行。此时,通常需要有机构或系统用于推动物质在此类装置内的各通道、室或区域间流通。根据所述微液体装置可选用多种物质传输方法。例如,优选实施方式之一中,物质在装置通道内的流动是通过在需要物质流经的通道上加以压差。这可以通过在通道一端加以正压而在另一端加以负压来实现。在复杂的通道网络中,可在装置结构内设置阀门等,用于阻止和启动经过特定通道的流动,由此控制所有互联通道内的流量。或者,可以通过调节通道阻力来指定物质通过不同通道的流速、时机和/或流量,即使在只施加一个压差的情况下,例如只在一个通道口施加真空。此类通道网的例子参见1999年1月28日的美国专利申请09/238,467和1999年1月19日的美国专利申请09/233,700,以及1999年3月26日的美国专利申请09/277,367。
或者,本发明可采用受控的电动传输系统。这种电动传输系统可参见ramsey的美国专利5,858,195。此类电动传输和引导系统包括依赖于带电物质在电场内电泳迁移率的那些系统。此类系统更多地是指电泳物质传输系统。也可使用其他物质引导和传输系统,所述系统依赖于施加贯穿通道或室等结构的电场所引起的液体等物质在通道或室结构内的电渗流动。简而言之,当将液体引入表面带有带电官能团(例如,蚀刻玻璃通道或玻璃毛细管内的羟基)的通道内时,这些官能团会离子化。如果是羟基,这种离子化(例如在中性ph下),会使表面的质子释放到液体中,在液体/通道表面界面上形成质子富集,或在通道内整个液体的外围形成带正电的鞘。沿通道长度施加一个电压梯度会引起质子鞘向压降方向移动,即移向负极。
本发明中“受控电动物质传输和引导”指前述电动系统,它们对施加于多个(2个以上)电极上的电压实行有源控制。换言之,这种控制的电动系统同时对两个交叉通道上的电压梯度进行控制。具体地说,本发明优选的微液体装置和系统包括一个主体结构,其中有至少2根交叉通道,例如相互连通的封闭室,所述通道具有至少3个非交叉末端。根通道的交叉点指2根或2根以上通道彼此流通的位点,包括“t”形交叉,十字交叉,多管道“轮辐状”交叉,或其他允许2根或2根以上通道彼此流通的通道形状。通道的非交叉末端即通道并非因为与其他通道交叉(例如“t”形交叉)而终止的位点。在优选形式中,所述装置具有至少3根交叉的通道,具有至少4个非交叉末端。在基本的十字交叉结构中,即一根水平通道与一根垂直通道交叉时,受控的电动物质传输系统可以通过限制另一通道内物质流经交叉点时的流速来有调地引导物质流过交叉点。例如,假设需要将第一物质通过水平通道传输(例如从左向右)流经与垂直通道的交叉点,可以沿水平通道的长度方向施加一个电压梯度,即在该通道的左端施加第一电压,在右端施加较低的第二电压或任右端浮动(即不加电压),这样就可以实现该水平通道内物流简单的电动传输而通过交叉点。然而,这种经过交叉点的物质流动会造成交叉点处的严重扩散,这既是由于所传输物质本来的原有扩散性质,也是因为交叉点的对流效应。
在受控电动物质传输中,流经交叉点的物质受到来自侧面通道(例如上方通道和下方通道)的少量物质流的约束。这是通过沿物质流动路径(例如从垂直通道的上端或下端向右末端)施加一个低电压梯度。结果造成物流在交叉点收聚,从而避免物质扩散进入垂直通道。然后,通过沿垂直通道长度方向(例如从上端至下端)施加一个电压梯度,将交叉口收聚的物流注入垂直通道。为了避免注入过程中来自水平通道的泛滥,将少量物流引回侧面通道,从而将物质从交叉点“拉回”。
除收聚注入法之外,受控电动物质传输还可方便地用于形成虚拟阀,即没有机械或移动部分的阀。具体地说,以上述十字交叉点为例,依靠来自垂直通道的受控物流(例如从垂直管的上臂流向下臂)可有效地调节、截断和恢复从通道一段流向另一段(例如从水平通道的左臂流向右臂)的物流。具体地说,在“关闭”状态下,通过施加于左末端与上末端间的电压梯度,物质被从左臂经交叉点引入上臂。沿此途径(从下端至上端)施加一个类似的电压梯度,将收聚物流从下臂引向上臂。然后,将从左至上的电压梯度改为从左至右,则将定量物质从水平通道的左臂配送进了右臂。电压梯度和时间决定着以此方式配送的物质量。虽然以4路十字交叉为例进行了说明,但上述受控电动物质传输系统可方便地改用于更复杂地互联通道网络,例如互联平行通道列阵。
采用以上电动传输系统的系统的一个例子如图7所示,参见图11。如图所示,系统1100包括一个微液体装置700,它包括一个已组合的移液器/毛细管元件708。每个接电储器706内都各有一个电极1128-1136与其中的液体接触。每个电极1128-1136都操作性地连接电控制器508,该控制器能够通过各电极输出不同的电压和/或电流。附加电极1138也操作性地连接1108,当毛细管元件708浸入物质时,它与多孔板502内待取样的样品物质电接触。例如,电极1138可以是毛细管708上的一层导电涂层,与操作性连接控制器508的导线连接。或者,电极1138可以只是一根靠近毛细管的电极线,能与毛细管元件708的末端一起浸入或接触样品。或者,所述电极1138可以与物质来源相连,例如是物质来源孔上的导电涂层或是制作来源储器的导体材料。于是,建立电场只需要将导线与来源储器材料或涂层接触即可。将一个或多个多孔板502和/或装置700相对移动,然后将移液器1138浸入孔中,即可从多孔板502上不同的孔内再取样。这样的移动一般可通过将一个或多个装置700或多孔板502置于平移台(例如所示的x-y-z平移台1142)上来实现。
在另一种应用中,可以将多种物质传输方法和系统联用。简而言之,此类联合系统的实施方式之一依赖于用电动力在微液体系统内产生压差。所述的联合系统将电动系统的可控性与压力系统没有电泳漂移等优点相结合。这样的联合系统可参见已公开的国际专利申请wo99/16162。其他联合系统还可以在通道网的一部分用电动力移动物质,而在另一部分用压力。
有多种其他系统可用于实施本发明,这包括例如转子系统,量尺系统,点阵系统等。iv.试剂盒和试剂用于实施本发明方法和试验的试剂可以以试剂盒的形式提供给使用者以便应用。这样的试剂盒一般包括如何进行特定试验的说明,可能包括液体容器,例如池、多孔板、微液体装置等,反应就在其中进行。
通常,试剂盒内的试剂包括带荧光标记的第一试剂,以及聚离子化合物。这些试剂可以装在小瓶中由使用者量取,或装在已定容的小瓶或安瓿瓶中,简单混合即可得到合适的反应混合物。试剂可以呈液体或冻干剂的形式,还可以包括用于稀释和/或使试剂复水的缓冲液。通常,所有试剂和说明一起装在一个盒子、袋子等中以便使用。v.实施例实施例1由荧光偏振检测磷酸化产物1份电中性的可磷酸化底物(荧光素-qspkkg-conh2)与atp和ckd2(cyclin依赖性激酶)一起孵育。用标准毛细管电泳法分析该混合物,结果表面底物已完全转化为产物。同时制备一个阴性对照(无酶)。用50mm taps ph9.0缓冲液(1∶4)稀释这两种反应混合物。样品装在比色杯中,以490nm光激发,在520nm处测定荧光发射,用荧光计测定荧光偏振值。加入聚-d-赖氨酸溶液和水(每次加入使聚-d-赖氨酸浓度提高6μm)。图12a为试验结果,是样品的荧光偏振值与聚-d-赖氨酸加量的关系。
如图所示,没有聚赖氨酸时,底物(方块记号)和产物(菱形记号)的荧光偏振度都为约38毫偏振单位(mp)。加入聚赖氨酸后,产物的荧光偏振度显著提高(先升至72mp,再加入大量过量聚赖氨酸后,升至约100mp)。底物的荧光偏振度只提高了约42mp。
图12b-e是另一蛋白质激酶a(pka)底物与蛋白质激酶c(pkc)底物随聚精氨酸浓度不断提高的荧光偏振度图。具体地说,分析了一系列pck底物及其磷酸化衍生物随聚精氨酸浓度升高的荧光偏振度。以下底物及其磷酸化衍生物的使用浓度是125nm。非磷酸化肽在图12b-e中以方块记号表示,磷酸化的为菱形记号。每次都是磷酸化底物的偏振水平较高。所用的肽是(下划线表示带磷酸残基)
实施例2根据荧光偏振度区分产物浓度用聚组氨酸替换聚赖氨酸进行了其他一些试验。此时,所用的缓冲液是50mmbistris ph6.5;聚组氨酸的分子量约15800d(购自sigma chemical,st.louis,mo)。
制备含不同比例丝氨酸/苏氨酸底物和产物的混合物,ckd2和蛋白激酶a(pka)。cdk底物与实施例1所述相同。pka底物为荧光素-lrraslg,其中c末端或者是羧基或者是羧酰氨基。用这些混合物作为不同底物转化率的激酶反应模型。水性储备液的浓度约为1.3mm,最终浓度为10至25mm。
仍是490nm激发,520nm发射,如此测定荧光偏振值(两种底物都以荧光素标记)。图13和14显示了以上试验的结果。简而言之,图13和14是磷酸化产物浓度(表示为%转化率)与底物相比不断升高时的荧光偏振图。图13所示的情况中,底物和产物模拟cdk2的底物/产物,图14则是pka底物/产物混合物的类似数据(如前所述)。可以看出,荧光偏振信号与底物向产物转化率之间存在良好的线性依赖性。因此,该方法非常适合跟踪激酶反应进程和用于在化合物库中筛选激酶抑制剂。
用相同的试验过程,但用各自特定的底物,并用聚精氨酸作为聚离子化合物,对蛋白激酶a(pka)和其他蛋白质激酶进行了试验。具体地说,制备了5种不同的荧光素标记的肽,内含三种不同丝氨酸或酪氨酸激酶所识别的序列。以上不同的底物在其非磷酸化位点上带有 2至-1(ph7.5)的净电荷。这些电荷因此会分别产生0至-3单位电荷的磷酸化产物。
用各自的酶在atp存在下处理不同的肽,用毛细管电泳分离底物和产物,并通过测定荧光偏振来获得转化率。所有样品都表现出ce检测和fp检测之间良好的关联性。作为实施例之一,图15显示了对pkbα的ce检测和fp检测之间的关联性。
实施例3用荧光偏振检测酶促反应的进程用不同浓度(0μm,0.5μm,1μm,2μm,4μm,8μm,16μm和32μm)的atp溶液(50mm hepes,ph7.5,10mm mgcl2),500nm聚精氨酸,184nm pka和125nmkemptide底物(fl-lrraslg-coo-)进行了另一次pka试验。为了测定本发明荧光偏振检测法检测反应时间进程的效率,考察了试验的时间进程。图16是混合物中不同atp浓度下荧光偏振度与反应时间的图。可以看出,提高atp浓度一般会加快反应速度。除对照之外,所有情况下的荧光偏振度都随时间升高。具体地说,随着反应的进行,越来越多的底物因为添加了磷酸基团而带上电荷,于是增强了聚精氨酸的结合和与此相关的荧光偏振度改变(例如,更多地偏振,更少地去偏振)。图17是初速度与atp浓度关系图,得到的是所研究试验的特征性动力学图。然后,可用该动力学数据在lineweave-burke图(图18)中求得特定激酶的km。实施例4用荧光偏振分析磷酸酶活性本发明的荧光偏振试验法还可用于检测磷酸酶试验的时间进程。简而言之,将已知磷酸酶的荧光性底物置于试验缓冲液中(50mm hepes,ph7.5,5mm dtt,200mm nacl和300nm聚精氨酸)。检测一段时间内含不同浓度磷酸酶的对照反应(无酶)和反应混合物的荧光偏振水平。图19是对照和酶促试验混合物的图。可以看出,在磷酸酶存在下,相对荧光偏振值随时间下降。具体地说,因为底物上促进聚精氨酸结合的磷酸基团不断减少,越来越少的聚精氨酸与荧光性底物相互作用,因此,反应混合物产生的荧光偏振度随时间越来越小。实施例5用荧光偏振分析蛋白酶活性本发明的荧光偏振检测法还可以用于蛋白酶试验。具体地说,用本发明方法进行胰凝乳蛋白酶试验,其中使用荧光性电中性胰凝乳蛋白酶底物(fl-egiygvlfkkk-ch2),其一端带有荧光团,另一端是聚赖氨酸尾。具体地说,该底物经胰凝乳蛋白酶剪切得到带-4净电荷的fl-egiy和带 4净电荷的gvlfkkk。如本文所述,聚阳离子择优结合反应产物的高负电荧光部分,因而造成标记部分的荧光偏振偏移。简而言之,在50mm hepes缓冲液,ph7.5,5mmcacl2,500nm胰凝乳蛋白酶底物,1μm聚精氨酸中进行该反应。分别进行3次反应,1次是无酶的对照,2次是不同浓度的酶(0.125μg/ml和1.25μg/ml胰凝乳蛋白酶)。图20是以上各试验的荧光偏振时间图。如图所示,对照(菱形记号)的荧光偏振没有随时间改变,低浓度(0.125μg/ml,大方块记号,中线)和高浓度(1.25μg/ml,小方块记号,上线)胰凝乳蛋白酶则表现出偏振水平随时间而升高,高酶浓度的起初升高更快。荧光偏振水平的升高反映当正电末端被胰凝乳蛋白酶切除后,发生了聚精氨酸与底物负电部分之间更强的相互作用。实施例6用荧光偏振检测核酸杂交试验本发明试验方法还可用于检测核酸杂交试验。因为无需将待检查的靶序列固定化,该方法特别有意义。既,整个反应都在溶液中进行。
用荧光标记的肽核酸序列202与dna靶分子192和182进行杂交试验。pna可购自applied biosystems division of perkin-elmer corporation(foster city,ca)。这些分之序列如下所示。如果是pna分子,所给的序列说明是dna分子的类似物。3种分子的序列为2025′fl-o-gtcaaatactcca (seq id no)1925′atgggctggagtatttgacctaatt (seq id no)1825′cgctgtggatgctgcctga(seq id no)dna序列192中有13个碱基(粗体)与pna探针202完全互补,而182则是非互补寡核苷酸。
含1μm pna202的50mm hepes,ph7.5溶液与5μm 192或5μm 182混合。混合物在室温下放置10分钟,然后装入荧光计的比色杯,测定荧光偏振。用490nm激发,在520nm测定荧光发射。第一次,记录没有聚氢溴酸l赖氨酸(分子量约70至100kda)(sigma chemicals)存在下的荧光偏振值,然后记录有其存在下的荧光偏振值。加入的聚l赖氨酸是储备液的水溶液(约440μm)。聚l赖氨酸的最终浓度为4.4和8.8μm。所得的荧光偏振值见图21。
如图所示,含202和非互补182的混合物的偏振值为86mp。当存在聚l赖氨酸时,该值升至140mp。与此不同,202与互补性192序列的杂交链在没有聚l赖氨酸时的偏振值为100mp,有其存在时为229mp。该结果说明,可用聚l赖氨酸存在下的荧光偏振度来检测溶液中是否存在特异性pna/dna杂交链。该试验可方便地用于检测样品中是否存在特定的序列,例如在杂交测序中,序列检验中,序列变异筛选(如多形性筛选,即snp、stp)中等。
实施例7检测单核苷酸取代可用该试验来检测一核酸探针与完全互补靶序列之间,以及与有一个碱基变异的靶序列(例如单核苷酸多形(snp)之间的差异杂交。具体地说,用其中序列与靶序列中一段亚序列完全互补的荧光标记pna探针检测包含该亚序列的靶序列和亚序列中有一个碱基被其他碱基取代的靶序列。
pna探针(pna7637)(seq id no——),靶dna序列(dna224)(seq id no——)和单碱基错配靶dna序列(dna225)(seq id no——)的5′-3′序列如下pna7637荧光素-cctgtagca (seq id no——)dna224ttgttgccaatgctacaggcatcgt (seq id no——)dna225ttgttgccaatgctgcaggcatcgt (seq id no——)粗体表示与pna探针完全互补的亚序列。下划线表示snp位点。
pna探针7637的最终使用浓度为250nm,反应体积为400μl。所用缓冲液为50mm hepes,ph7.5,100mm nacl。溶液中还含约3μm的聚l赖氨酸。在pna溶液中不断加入1μl一份的dna靶分子244和245,在每次加入后读取荧光偏振值(490nm激发,520nm发射)。图22中为该试验的数据。完全互补的靶分子/探针混合物(菱形记号)的荧光偏振显著高于单碱基错配混合物(方块记号),这说明其杂交程度较高。如图所示,在完全互补实施例中,当靶序列过量1m时,杂交进入平台期。
还进行了聚赖氨酸存在下的热变性试验,同时监测反应混合物的荧光偏振度变化。具体地说,使用了具有以下序列的3种不同dna靶分子212gctggagtatttgacct (完全互补,·)214gctggagtttttgacct (中部t/t错配,·)215gctggagtctttgacct (中部c/t错配,·)用以下序列的3种不同带荧光标记pna探针(9聚体,11聚体和13聚体)检测以上靶序列,并逐渐提高温度,同时监测荧光偏振值188fl-o-caaatactc201fl-o-tcaaatactcc202fl-o-gtcaaatactcca然后,逐渐提高各反应混合物的温度,同时监测荧光偏振值。图23a、b和c显示用三种不同探针对靶序列的检查。数据点代表3次实验的平均值。所有熔点曲线都进行了标准化,其中只有pna探针的熔点曲线是从存在dna靶序列的熔点曲线中扣除得到的。
正如预计的,pna探针越长,熔点曲线推进得越远。具体地说,图23a显示的靶序列与探针(9聚体)的熔点明显低于图23b(11聚体)和23c(13聚体)。而且,可以清楚地看到完全互补杂交链(菱形记号)与单碱基错配杂交链(方块和三角记号)之间的差异,在提供的两种错配中,c/t错配是最不稳定的,即,熔点曲线的偏移最大。该实施例清楚的表明,本发明方法的灵敏度可用来区分靶序列之间的单核苷酸差异(例如snp等)。
虽然以上试验采用的是荧光偏振检测法,但也发现,以上试验方法在杂交后还引起荧光强度的改变。具体地说,如上所述对2段不同核酸序列进行单核苷酸取代试验。两试验中,一个pna探针(250nm)与野生型完全互补,另一个则有一个碱基被取代,用它们监测靶序列(在50mm hepes,ph7.5,100mm nacl中),然后用聚l赖氨酸(3.3μm)处理。即与混合物接触的聚l赖氨酸浓度逐渐升高,测定荧光偏振值和总荧光强度。图24是所测各完全互补杂交链和单碱基错配的荧光强度和荧光偏振。可以看出,荧光强度和荧光偏振度都可以作为区分完全互补和单碱基错配反应的基础。
除非另作说明,所有所述浓度都是某组分加入混合物或溶液时的浓度,与加入后该组分的转化、分解,反应或转化成一种或多种其他物质无关。除非特别限定了顺序,或者,顺序规定从上下文看显而易见,所述步骤都可以按任意顺序进行。通常,所述的顺序是优选顺序。
对文中出版物和专利申请的参考都是对它们各自的单独参考。虽然以上为了清楚和便于理解,通过说明和实施例详细描述了本发明,但是,在权利要求的范围内显然还存在着某些变化和修改。
权利要求
1.一种检测反应的方法,包括提供第一试剂混合物,其中含有带荧光标记的第一试剂;向第一试剂混合物中引入第二试剂生成第二试剂混合物,第二试剂与第一试剂反应生成电荷显著不同于第一试剂的荧光标记产物;向第一和第二试剂混合物至少其一中加入聚离子;将第二试剂混合物的荧光偏振水平与第一试剂混合物的进行比较。
2.根据权利要求1所述的方法,其中,聚离子与产物缔合。
3.根据权利要求1所述的方法,其中,聚离子与第一试剂缔合。
4.根据权利要求1所述的方法,其中,聚离子带有与产物所带相反的电荷。
5.根据权利要求1所述的方法,所述聚离子是聚阳离子。
6.根据权利要求5所述的方法,所述聚阳离子是聚氨基酸。
7.根据权利要求6所述的方法,所述聚氨基酸包含以电荷依赖性方式与荧光性第一试剂或产物缔合的蛋白质。
8.根据权利要求6所述的方法,所述聚氨基酸选自聚赖氨酸,聚组氨酸,聚精氨酸或它们的共聚物。
9.根据权利要求1所述的方法,所述第一试剂包含基本上不带电荷或带正电荷的核酸类似物,第二试剂包含核苷酸序列与上述核酸类似物互补的核酸,所述产物包含上述核酸类似物与核酸的杂交产物。
10.根据权利要求9所述的方法,所述核酸类似物选自肽核酸(pna),磷酸甲酯聚合物和核酸阳离子。
11.根据权利要求1所述的方法,所述第一试剂包含可磷酸化的化合物,所述产物含磷酸化的第一试剂。
12.根据权利要求11所述的方法,其中,第二试剂含激酶。
13.根据权利要求1所述的方法,所述可磷酸化的化合物包括具有磷酸化位点的肽。
14.根据权利要求1所述的方法,所述第一试剂包含已磷酸化的化合物,所述产物包含去磷酸化的第一试剂。
15.根据权利要求14所述的方法,其中,第二试剂包含磷酸酶。
16.根据权利要求14所述的方法,所述第一试剂包含荧光标记的磷酸化肽。
17.根据权利要求1所述的方法,所述第一试剂包含第一多肽序列,所述产物包含该多肽序列的片段,该片段带有不同于第一多肽序列的电荷。
18.根据权利要求17所述的方法,其中,第二试剂包含蛋白质分解试剂。
19.根据权利要求18所述的方法,所述蛋白质分解试剂包含蛋白酶。
20.根据权利要求1所述的方法,所述第一试剂通过第一通道传输,所述第二试剂被引入该第一通道与第一试剂混合。
21.根据权利要求20所述的方法,所述第一和第二试剂分别通过第二和第三通道引入第一通道,第二和第三通道均具有第一和第二末端,它们在各自的第二末端与第一通道相交。
22.根据权利要求21所述的方法,所述第二和第三通道的第一末端与第一和第二储器流通衔接,第一和第二储器中分别装有第一和第二试剂。
23.根据权利要求1所述的方法,还包括向第一试剂投射激发光,测定第一试剂内的荧光偏振水平;向第二试剂混合物投射激发光,测定第二试剂混合物的荧光偏振水平;所述比较步骤包括测定第一试剂荧光偏振水平与第二试剂混合物荧光偏振水平之间的第一差值。
24.根据权利要求23所述的方法,还包括向第一和第二试剂混合物至少其一中引入待测化合物,在待测化合物存在和不存在的情况下进行所述比较,所述荧光偏振水平的第一差值在有待测化合物存在时相对于其不存在时的减少或增大反映该待测化合物是第一试剂与第二试剂之间反应的抑制剂或增强剂。
25.根据权利要求24所述的方法,所述第二试剂混合物通过第一通道传输,所述待测化合物被引入第一通道。
26.根据权利要求25所述的方法,所述第一通道与一毛细管元件流通相连或是毛细管元件的一部分,所述待测化合物被从待测化合物来源吸入所述毛细管元件。
27.根据权利要求24所述的方法,其中,多种不同待测化合物被引入第一和第二试剂混合物至少其一的不同区段中。
28.根据权利要求24所述的方法,所述第二试剂混合物通过第一通道传输,多种待测化合物引入第一通道不同的液体区域中。
29.一种鉴定靶核酸中是否存在某核苷酸亚序列的方法,该方法包括将靶核酸序列与一段基本上不带电或带正电的荧光标记核酸类似物在第一反应混合物中接触,所述核酸类似物与所述亚序列互补因而能够与该亚序列特异性杂交形成第一杂交产物;将第一反应混合物与聚离子接触;将聚离子存在条件下第一反应混合物的荧光偏振水平与靶核酸序列不存在条件下核酸类似物的荧光偏振水平比较,该水平的升高说明有第一杂交产物存在。
30.根据权利要求29所述的方法,所述核酸类似物选自肽核酸序列(pna),磷酸甲酯聚合物和核酸阳离子。
31.根据权利要求29所述的方法,所述聚离子是聚阳离子。
32.根据权利要求31所述的方法,所述聚阳离子是聚氨基酸。
33.根据权利要求32所述的方法,所述聚氨基酸包含以电荷依赖性方式与荧光性第一试剂或产物缔合的蛋白质。
34.根据权利要求32所述的方法,所述聚氨基酸选自聚赖氨酸,聚组氨酸,聚精氨酸或它们的共聚物。
35.根据权利要求29所述的方法,所述的靶核酸序列包含一个单核苷酸多形的至少一个基因座。
36.根据权利要求29所述的方法,所述核酸类似物与靶核酸序列内单个核苷酸多形的一个等位基因互补。
37.一种检测可磷酸化化合物的磷酸化的方法,包括对所述可磷酸化化合物进行荧光标记;在第一混合物内,磷酸供体存在下,将所述可磷酸化化合物与激酶接触;将第一混合物与聚离子接触;将聚离子存在条件下第一混合物的荧光偏振水平与激酶不存在条件下带荧光标记的可磷酸化化合物的荧光偏振水平进行比较。
38.根据权利要求37所述的方法,所述聚离子与产物缔合。
39.根据权利要求37所述的方法,所述聚离子与第一试剂缔合。
40.根据权利要求37所述的方法,所述聚离子带有与产物所带相反的电荷。
41.根据权利要求37所述的方法,所述聚离子是聚阳离子。
42.根据权利要求31所述的方法,所述聚阳离子是聚氨基酸。
43.根据权利要求42所述的方法,所述聚氨基酸包含以电荷依赖性方式与荧光性第一试剂或产物缔合的蛋白质。
44.根据权利要求42所述的方法,所述聚氨基酸选自聚赖氨酸,聚组氨酸,聚精氨酸或它们的共聚物。
45.一种检测可磷酸化化合物的磷酸化的方法,包括对所述可磷酸化化合物进行荧光标记;在第一混合物内,磷酸基团存在下,将所述可磷酸化化合物与激酶接触;将第一混合物与第二试剂混合物接触,该第二试剂混合物中包含缔合有螯合基团的蛋白质,和选自f3 ,ca2 ,ni2 和zn2 的金属离子;将第二混合物存在条件下第一混合物的荧光偏振水平与激酶不存在条件下带荧光标记的可磷酸化化合物的荧光偏振水平比较。
46.一种试验系统,包括液体容器,包括第一反应区,其中有包含带荧光标记的第一试剂的第一试剂混合物;与第一试剂反应生成电荷不同于第一试剂的荧光标记产物的第二试剂;和聚离子;检测区;和与检测区传感相通的检测器,该检测器可检测检测区内试剂的荧光偏振水平。
47.根据权利要求46所述的试验系统,所述液体容器的主体结构至少具有位于其中的第一通道,该第一通道的一部分是反应区,另一部分是检测区。
48.根据权利要求47所述的试验系统,还包括一个物质传输系统,用于将第一试剂、第二试剂和聚离子从第一通道的反应区送至第一通道的检测区。
49.根据权利要求48所述的试验系统,所述的物质传输系统包括向第一通道末端之一施加压力或产生真空的装置,可将液体从反应区向检测区推进或抽吸。
50.根据权利要求48所述的试验系统,所述物质传输系统包括一个电源,它操作性地与第一通道的不同位点偶联,用于在至少第一通道的一段长度上产生电场,该电场使得物质从反应区向检测区移动。
51.根据权利要求46所述的试验系统,所述反应容器包括多孔板上的一个孔。
52.根据权利要求46所述的试验系统,所述反应容器包括试管。
53.一种试验系统,包括位于主体结构内的第一通道,该第一通道与以下机构流通相连第一试剂混合物来源,所述混合物中含有带荧光标记的第一试剂;第二试剂来源,所述第二试剂与第一试剂反应生成电荷不同于第一试剂的带荧光标记的产物;聚离子来源;用于将第一试剂、第二试剂和聚离子引入第一通道的物质传输系统;与第一通道传感相通的检测器,该检测器可检测检测区内试剂的荧光偏振水平。
54.根据权利要求53所述的试验系统,所述第一试剂来源,第二试剂来源和聚离子来源各自是位于主体结构内的第一、第二和第三储器,所述第一、第二和第三储器与所述第一通道流通相连。
55.根据权利要求54所述的试验系统,还包括外部取样毛细管,贯穿其中的毛细管通道具有第一和第二末端,所述毛细管通道的第一末端与第一通道流通相连,第二末端开口。
56.权利要求53所述的试验系统,还包括与检测器操作性连接的计算机,该计算机可接收来自检测器的荧光偏振度数据,将第一试剂混合物的荧光偏振水平与第二试剂混合物的荧光偏振水平比较,所述第二试剂混合物包含第一试剂、第二试剂和聚离子。
57.一种试剂盒,包括一份带荧光标记的第一试剂,;一份与第一试剂反应生成电荷与第一试剂不同的荧光产物的第二试剂;一份聚离子;和以下操作说明检测第一试剂的荧光偏振水平;在第一混合物中将第一试剂、第二试剂与聚离子混合;检测第一混合物的荧光偏振度;和将第一试剂的荧光偏振水平与第一混合物的荧光偏振水平比较。
58.根据权利要求57所述的试剂盒,还包括一个液体容器。
59.根据权利要求58所述的试剂盒,所述液体容器包括多孔板上至少一个孔。
60.根据权利要求57所述的试剂盒,所述液体容器包括内部至少有一个第一通道的主体结构。
61.根据权利要求60所述的试剂盒,所述液体容器包括内部有多个相交通道的主体结构。
62.用试验系统确定反应参数的方法,包括提供第一试剂混合物,其中包含带荧光标记的第一试剂,向第一试剂混合物中引入第二试剂形成第二试剂混合物,所述第二试剂与第一试剂反应生成电荷显著不同于第一试剂的荧光标记产物,向第一和第二试剂混合物至少其一中引入聚离子,还包括以下步骤的计算机辅助程序测定第一试剂混合物的第一荧光偏振水平;测定第二试剂混合物的第二荧光偏振水平;和将第一和第二荧光偏振水平进行比较;并计算反应参数。
全文摘要
本发明涉及用于进行多种不同试验的方法、系统和试剂盒,所述试验包括提供一种第一试剂混合物,其中含有带荧光标记的第一试剂。向第一试剂混合物中引入第二试剂,于是形成第二试剂混合物,在其中,第二试剂与第一试剂反应生成电荷显著不同于第一试剂的荧光标记产物。向第一和第二试剂混合物至少其一中加入聚离子,测定第二试剂混合物相对于第一试剂混合物的荧光偏振度,这种荧光偏振度反映反应的速度或程度。
文档编号g01n33/566gk1355884sq00807851
公开日2002年6月26日 申请日期2000年5月11日 优先权日1999年5月21日
发明者t·t·尼基法罗夫 申请人:卡钳技术有限公司
相关技术
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
网站地图