一种基于渗氮层基体表面相组成调控高效沉积制备非晶碳膜的方法及其应用-凯发k8天生赢家

文档序号:35873026发布日期:2023-10-28 09:01阅读:2来源:国知局
一种基于渗氮层基体表面相组成调控高效沉积制备非晶碳膜的方法及其应用

1.本发明涉及复合涂层制备技术领域,具体涉及一种基于渗氮层基体表面相组成调控高效沉积制备非晶碳膜的方法及其应用。


背景技术:

2.类金刚石(dlc)薄膜是一种具有低摩擦系数、高耐磨性和化学惰性的硬质涂层。这种非晶碳膜作为固体润滑膜非常有吸引力,但是,由于涂层内的高内应力以及和基材之间的热膨胀系数差异大等原因导致其在使用过程中容易从基材脱落,严重制约了其实际应用。渗氮是一种广泛应用于金属表面的强化技术,高硬度的渗氮表层可以显著改善工件的耐磨性。梯度的硬度分布使渗氮层具有优异的承载能力和疲劳性能,然而,传统复合表面处理需要在多台设备、多道工序中进行,多设备、多工序技术很难保证复合涂层质量的稳定性和可控性,同时降低了复合涂层的制备效率,增加了复合涂层的制备成本,阻碍了复合涂层的规模化制备。等离子体渗氮系统中通过高温渗氮后接低温等离子体镀碳膜技术复合,实现一种一步法原位制备渗层 非晶碳膜复合层,改善工件的摩擦学性能。然而,等离子体渗氮和等离子体镀碳膜在技术复合中由于等离子体渗氮后基体表面相类别、分布以及含量受到多种因素影响导致后续原位沉积的非晶碳膜质量、生长效率以及膜基结合力不可控的难题。
3.鉴于上述缺陷,本发明创作者经过长时间的研究和实践终于获得了本发明。


技术实现要素:

4.本发明的目的在于解决等离子体渗氮和等离子体镀碳膜在技术复合中由于等离子体渗氮后基体表面相类别、分布以及含量受到多种因素影响导致后续原位沉积的非晶碳膜质量、生长效率以及膜基结合力不可控的问题,提供了一种基于渗氮层基体表面相组成调控高效沉积制备非晶碳膜的方法及其应用。
5.为了实现上述目的,本发明公开了一种基于渗氮层基体表面相组成调控高效沉积制备非晶碳膜的方法,包括以下步骤:
6.s1,基体预处理:将基体钢材料表面用砂纸打磨抛光至镜面,在酒精和丙酮溶液中清洗干净备用;
7.s2,高温等离子体渗氮:将步骤s1得到的样品放入等离子体氮化系统中进行渗氮处理,通入氢气或氩气升温,待温度升至设定值通入渗氮源气体氮气和氢气,控制气压和源气体流量,进行渗氮保温;
8.s3,氩离子等离子体轰击活化:待步骤s2中的渗氮保温结束后,停止通入渗氮源气体,通入氩气,在炉温降低的同时,实现氩离子轰击;
9.s4,低温等离子体镀碳膜:待温度降低至200℃以下时,开启电压,通入碳源气体和氢气,控制气压和碳源气体、氢气流量,进行非晶碳膜的沉积,沉积后试样随炉冷却至室温,
取出试样。
10.所述步骤s2中的高温等离子体渗氮过程中气压为50~1000pa。
11.所述步骤s2中高温等离子体渗氮过程中氢气与氮气流量比为1:10~9:10,渗氮温度为350~600℃。
12.所述步骤s2中的高温等离子体渗氮过程中气压为220pa,氢气与氮气流量比为1:3,渗氮温度为520℃。
13.所述步骤s2中高温等离子体渗氮所获得的渗氮层包括fe3n和fe4n相。
14.所述步骤s3中氩离子等离子体轰击活化条件,氩气流量为5~25sccm,气压为30~150pa,电压为600~800v,活化时间为30~120min,待温度降低至200℃时进行步骤s4低温等离子体镀碳膜。
15.所述步骤s4中碳源气体为甲烷、乙烷、丙烷、苯类、二甲基二氯硅烷,二甲基氯硅烷,三甲基氯硅烷、一氧化碳、甲醇、丙酮和酒精中的任意一种。
16.所述步骤s4中沉积温度小于200℃,沉积电压为750~850v,沉积气压小于100pa。
17.本发明还公开了采用上述制备方法制得的渗氮层/非晶碳膜复合涂层和这种渗氮层/非晶碳膜复合涂层在机械和结构零部件中的应用。
18.在等离子体氮化过程中,氮气分子在氮气-氢气气氛中被等离子体解离并活化,使氮原子扩散到材料表面,这种氮可以产生一个氮化区,由表面的化合物层和生长到材料中次表层的扩散层组成,化合物层由ε-fe3n和γ
’‑
fe4n组成。氮化过程中的工艺参数对化合物层组成和性能影响很大,特别是气氛组成氮气与氢气的比例(氮氢比)。氮氢比增大可以使更多的氮原子用于扩散,从而使氮势增加易于形成氮含量更多ε-fe3n相,而低氮势则易于形成氮含量更低的γ
’‑
fe4n相,故本发明在渗氮温度以及渗氮时间相同的工艺参数下,通过变化氮气与氢气的比例来调控渗氮层表面的相组成。
19.与现有技术比较本发明的有益效果在于:本发明在等离子氮化系统中,利用高温等离子体渗氮,后接低温等离子体镀碳膜技术,通过精准调控基体渗氮层表面相组成及其相对含量诱导后续非晶碳膜的高效沉积,该方法可以提高碳膜的生长效率以及膜基结合力,获得性能优异的减摩耐磨复合涂层从而改善工件的摩擦磨损性能,形成一种在等离子体氮化系统中高温等离子体渗氮后接低温等离子体镀碳膜一步法原位高效制备渗氮层/非晶碳膜复合涂层的低成本复合技术,并将其应用在机械和结构零部件等关键构件领域。
附图说明
20.图1为实施例和对比例1、2、3、4中非晶碳膜的拉曼测试结果;
21.图2为实施例和对比例1、2的渗氮层表面的xrd测试结果;
22.图3为实施例和对比例3、4的渗氮层表面的xrd测试结果;
23.图4为实施例和对比例1、2的复合层的tem测试结果;
24.图5为实施例和对比例3、4的复合层的tem测试结果;
25.图6为实施例和对比例1、2的复合层界面微区的tem测试结果;
26.图7为实施例和对比例1、2的复合层的划痕测试结果;
27.图8为实施例和对比例3、4的复合层的划痕测试结果;
28.图9为实施例和对比例1、2的复合层的摩擦系数测试结果;
29.图10为实施例和对比例3、4的复合层的摩擦系数测试结果;
30.图11为实施例和对比例1、2的复合层的磨损率测试结果;
31.图12为实施例和对比例3、4的复合层的磨损率测试结果。
具体实施方式
32.以下结合附图,对本发明上述的和另外的技术特征和优点作更详细的说明。
33.实施例1
34.本实施例为控制等离子体渗氮源气体氮气与氢气比例制备最上表面相组成为单一fe3n相、次表面为fe3n与fe4n混合相的渗氮层后接低温等离子体镀碳膜,记为0,具体制备方法如下:
35.将合金钢表面用砂纸打磨抛光至镜面状态,清洗后放入等离子体氮化炉中进行渗氮处理,分别通入氮气和氢气作为反应气体,氮气与氢气比例为3:1,电压为800v,渗氮温度为520℃,气压为220pa,保温时间为8h。
36.保温时间结束后,不关闭电压,关闭渗氮源气体阀门,通入15sccm氩气对基体渗氮层表面进行轰击活化,电压降低至750v,气压设定为80pa,溅射时间为30min;
37.待温度降至200℃以下时,进行非晶碳膜制备,关闭氩气阀门,通入丙烷和氢气作为反应气体,沉积温度设定为160℃,气压设定为60pa,沉积时间为5h。沉积时间结束后样品随炉降温至室温,取出样品进行相关表征测试。
38.对比例1
39.本对比例为控制等离子体渗氮源气体氮气与氢气比例制备最上表面和次表面相组成皆为fe3n与fe4n混合相的渗氮层后接低温等离子体镀碳膜,记为1,具体制备方法如下:
40.将合金钢表面用砂纸打磨抛光至镜面状态,清洗后放入等离子体氮化炉中进行渗氮处理,分别通入氮气和氢气作为反应气体,氮气与氢气比例为1:1,电压为800v,渗氮温度为520℃,气压为220pa,保温时间为8h。
41.保温时间结束后,不关闭电压,关闭渗氮源气体阀门,通入15sccm氩气对基体渗氮层表面进行轰击活化,电压降低至750v,气压设定为80pa,溅射时间为30min;
42.待温度降至200℃以下时,进行非晶碳膜制备,关闭氩气阀门,通入丙烷和氢气作为反应气体,沉积温度设定为160℃,气压设定为60pa,沉积时间为5h。沉积时间结束后样品随炉降温至室温,取出样品进行相关表征测试。
43.对比例2
44.本对比例为控制等离子体渗氮源气体氮气与氢气比例制备最上表面相组成为单一fe4n相、次表面为fe3n与fe4n混合相的渗氮层后接低温等离子体镀碳膜,记为2,具体制备方法如下:
45.将合金钢表面用砂纸打磨抛光至镜面状态,清洗后放入等离子体氮化炉中进行渗氮处理,分别通入氮气和氢气作为反应气体,氮气与氢气比例为1:3,电压为800v,渗氮温度为520℃,气压为220pa,保温时间为8h。
46.保温时间结束后,不关闭电压,关闭渗氮源气体阀门,通入15sccm氩气对基体渗氮层表面进行轰击活化,电压降低至750v,气压设定为80pa,溅射时间为30min;
47.待温度降至200℃以下时,进行非晶碳膜制备,关闭氩气阀门,通入丙烷和氢气作
为反应气体,沉积温度设定为160℃,气压设定为60pa,沉积时间为5h。沉积时间结束后样品随炉降温至室温,取出样品进行相关表征测试。
48.对比例3
49.本对比例为控制等离子体渗氮源气体氮气与氢气比例制备最上表面和次表面相组成皆为fe3n与fe4n混合相的渗氮层后接低温等离子体镀碳膜,记为3,具体制备方法如下:
50.将合金钢表面用砂纸打磨抛光至镜面状态,清洗后放入等离子体氮化炉中进行渗氮处理,分别通入氮气和氢气作为反应气体,氮气与氢气比例为3:1,电压为800v,渗氮温度为490℃,气压为220pa,保温时间为8h。
51.保温时间结束后,不关闭电压,关闭渗氮源气体阀门,通入15sccm氩气对基体渗氮层表面进行轰击活化,电压降低至750v,气压设定为80pa,溅射时间为30min;
52.待温度降至200℃以下时,进行非晶碳膜制备,关闭氩气阀门,通入丙烷和氢气作为反应气体,沉积温度设定为160℃,气压设定为60pa,沉积时间为5h。沉积时间结束后样品随炉降温至室温,取出样品进行相关表征测试。
53.对比例4
54.本对比例为控制等离子体渗氮源气体氮气与氢气比例制备最上表面和次表面相组成皆为fe3n与fe4n混合相的渗氮层后接低温等离子体镀碳膜,记为4,具体制备方法如下:
55.将合金钢表面用砂纸打磨抛光至镜面状态,清洗后放入等离子体氮化炉中进行渗氮处理,分别通入氮气和氢气作为反应气体,氮气与氢气比例为3:1,电压为800v,渗氮温度为460℃,气压为220pa,保温时间为8h。
56.保温时间结束后,不关闭电压,关闭渗氮源气体阀门,通入15sccm氩气对基体渗氮层表面进行轰击活化,电压降低至750v,气压设定为80pa,溅射时间为30min;
57.待温度降至200℃以下时,进行非晶碳膜制备,关闭氩气阀门,通入丙烷和氢气作为反应气体,沉积温度设定为160℃,气压设定为60pa,沉积时间为5h。沉积时间结束后样品随炉降温至室温,取出样品进行相关表征测试。
58.对上述实施例和对比例1、2、3、4中制备的0、1、2、3和4号复合层进行性能表征如下:利用拉曼光谱仪对碳膜进行测试,分析碳原子键合成分,如图1所示,图1为实施例和对比例1、2、3和4中非晶碳膜的拉曼图谱,结果显示具有明显的d峰和g峰,是典型非晶碳膜特征。
59.利用x射线衍射仪(xrd)对渗氮层表面相结构进行检测,选用cu-kα靶辐射,2θ角范围为20
°
~90
°
,步长0.02
°
,电压30kv,电流20ma。如图2和3所示,图2为实施例和对比例1、2的表面的xrd物相测试结果,图3为实施例和对比例3、4的表面的xrd物相测试结果。从结果可以看出,实施例和对比例1、2、3和4的渗氮层表面都是由αn,fe3n以及fe4n相组成,但各相相对含量差别很大,用jade软件对各峰强度进行拟合计算出fe3n相以及fe4n相的相对含量,结果表明实施例渗氮层表面fe3n相含量高达87.3%,而对比例1、2、3和4的渗氮层表面fe3n相含量分别为72.8%、35.5%、78.9%和52%,皆低于实施例。说明可以通过改变渗氮条件来调控渗氮层表面的相组成以及相对含量大小,从而影响后续非晶碳膜的沉积以及膜基结合力。
60.利用透射电子显微镜(tem)对复合层截面进行测试分析,如图4和5所示,图4为实施例和对比例1、2的复合层的tem测试结果,(a)为实施例复合层截面形貌,(b)为对比例1复
合层截面形貌,(c)为对比例2复合层截面形貌;图5为实施例和对比例3、4的复合层的tem测试结果,(a)为实施例复合层截面形貌,(b)为对比例3复合层截面形貌,(c)为对比例4复合层截面形貌。可以看出,实施例沉积的非晶碳膜厚度达到了近2微米,而对比例1、2、3和4沉积的非晶碳膜厚度分别只有约1.02微米、0.37微米、1.17微米和0.79微米。结果表明渗氮层表面相组成及含量对后续沉积的非晶碳膜厚度有很大影响,渗氮层表面fe3n相含量越多,碳膜生长效率越高。
61.利用透射电子显微镜(tem)对复合层界面微区进行测试分析,如图6所示,图6为实施例和对比例1、2的复合层的界面微区tem测试结果,(a)为对比例1复合层界面微区tem明场图,里面插入的是选取电子衍射图,图案中包含fe4n和fe3n的衍射环,分别对应fe4n的(111)(210)面;fe3n的(202)(211)和(113)面,结果表明高温等离子体渗氮所获得的渗氮层由fe3n和fe4n相组成。(b)、(c)、(d)图分别是实施例和对比例1、2界面微区的高分辨图,里面插入了相应的反傅里叶变换结果。由(b)图可以看出,实施例的渗氮层最上表面皆是单一fe3n相,渗氮层与非晶碳膜之间存在一个连续的过渡区。(c)图显示的对比例1的渗氮层最上表面和次表面都由fe3n和fe4n混合相组成,对比例3和4的结果与对比例1类似,这里未列出。(d)图显示的对比例2的渗氮层最上表面由单一fe4n相,次表面由fe3n与fe4n混合相组成。
62.利用划痕测试法并通过声信号及划痕形貌评估碳膜与基体之间的结合力,加载力为1~100n,加载速率为100n/min,如图7和8所示,图7为实施例和对比例1、2的复合层的划痕测试结果,(a)为实施例复合层,结合强度为94.43n,(b)为对比例1复合层,结合强度为51.45n,(c)为对比例2复合层,结合强度为32.01n;图8为实施例和对比例3、4的复合层的划痕测试结果,(a)为实施例复合层,结合强度为94.43n,(b)为对比例3复合层,结合强度为55.56n,(c)为对比例4复合层,结合强度为45.69n,可以看出实施例的结合力是高于对比例1、2、3和4的,说明渗氮层表面相组成及含量对复合层的结合力同样有很大影响,渗氮层表面fe3n相含量越多,复合层膜基结合力越高。
63.利用球盘摩擦磨损测试仪对复合层的摩擦磨损性能进行测试,摩擦副为氧化铝球(直径φ=6.35mm),载荷为1n,磨损半径为2mm,转数为240r/min,测试时间为2000s,测试温度为室温,通过分析摩擦系数曲线的变化可以判定非晶碳膜的生长情况以及复合层的摩擦磨损性能,如图9和10所示,图9为实施例和对比例1、2的复合层的摩擦系数曲线;图10为实施例和对比例3、4的复合层的摩擦系数曲线。从图中可以看出,对比例2复合层的摩擦系数在滑动开始阶段就开始升高且持续升高至大于0.4,说明碳膜很薄被磨穿了。对比例4复合层的摩擦系数经过开始阶段的轻微升高后逐渐稳定在低于0.2的范围内,说明碳膜有轻微磨损。实施例和对比例1
·
和3的摩擦系数在开始滑动后经历了短暂的下降后稳定在低于0.1的范围内,说明碳膜保存完整且复合层表现出优异的摩擦磨损性能。利用探针式轮廓应力仪对磨痕进行拟合计算出磨损率,如图11和12所示,图11为实施例和对比例1、2的复合层的磨损率计算结果;图12为实施例和对比例3、4的复合层的磨损率计算结果。从图中可以看出,对比例2的磨损率比实施例和对比例1和3磨损率高很多,表明对比例2的复合层碳膜厚度较薄,综合摩擦系数结果可知,渗氮层表面相组成及含量对后续非晶碳膜的沉积生长以及复合层的摩擦磨损性能都有很大影响,渗氮层表面的fe3n相而非fe4n相可以促进非晶碳膜的生长以及提高膜基结合力,可以通过调控渗氮层表面相组成高效制备具有优异减摩耐
磨性能的渗氮层/非晶碳膜复合涂层。
64.以上所述仅为本发明的较佳实施例,对本发明而言仅仅是说明性的,而非限制性的。本专业技术人员理解,在本发明权利要求所限定的精神和范围内可对其进行许多改变,修改,甚至等效,但都将落入本发明的保护范围内。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
网站地图